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Logarithmic corrections to scaling in critical percolation and random resistor networks
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We study the critical behavior of various geometrical and transport properties of percolation in six dimen-
sions. By employing field theory and renormalization group methods we analyze fluctuation induced logarith-
mic corrections to scaling up to and including the next-to-leading order correction. Our study comprehends the
percolation correlation function, i.e., the probability that two given points are connected, and some of the
fractal masses describing percolation clusters. To be specific, we calculate the mass of the backbone, the red
bonds, and the shortest path. Moreover, we study key transport properties of percolation as represented by the
random resistor network. We investigate the average two-point resistance as well as the entire family of
multifractal moments of the current distribution.
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I. INTRODUCTION

Percolation@1# is perhaps the most fundamental model
disordered systems. Despite its simplicity percolation has
abundance of applications@2#. It is one of the best studied
problems in statistical physics. After decades of enorm
interest it is justified to call percolation a major theme
statistical physics. Notwithstanding the intensive work a
complished to date, percolation remains a vivid area of
search.

There has been enormous progress in understanding
colation in low dimensions. At smalld many aspects of per
colation can be studied with reasonable effort and high p
cision by numerical means. Ind52, moreover, severa
features of percolation are known exactly due to conform
invariance@3#. Higher dimensions benefit from being acce
sible by renormalization group methods. In particular, va
ous scaling exponents describing critical percolation h
been calculated using expansions in the deviation« from the
upper critical dimension 6. In comparison, logarithmic co
rections, which are important for the critical behavior atd
56, have gained little attention so far. Exceptions can
found in Refs.@4–6# where the leading logarithmic correc
tions have been analyzed for purely geometric aspect
static percolation such as the percolation probability~prob-
ability that a given site belongs to an infinite cluster!, the
mean-square cluster size, and the correlation length. As fa
the transport properties of percolation clusters are concer
logarithmic corrections have not been calculated to date.
of the reason for this lack of progress was certainly that th
were no good numerical estimates available to verify anal
cal results on logarithmic corrections. In the meantime, ho
ever, highly precise numerical results for percolation in h
dimensions have become available@7–10#. Now, there exist
Monte Carlo results that clearly indicate the importance
logarithmic corrections@10#.

In recent years logarithmic corrections observed in sim
lations on linear polymers have been convincingly explain
by field theoretic methods@11,12#. However, in order to ob-
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tain the good agreement between numerics and theory it
necessary to push the analytic results beyond the lea
logarithmic correction. It is reasonable to expect that hig
order corrections will be likewise important in percolatio
The purpose of the present paper is to derive correspon
analytic results for several aspects of the percolation prob
with the emphasis on transport properties.

Our investigation is based on the Harris-Lubensky~HL!
model @13–15# for the random resistor network~RRN!. In
the past, the HL model has proved to be very valuable
studying the transport properties of percolation clusters
well as related problems. It allows to determine the aver
resistance between two points on a percolation cluster in
elegant way. A generalization of the HL model by Harris@16#
featuring nonlinear current-voltage characteristics is suite
study the fractal dimensions of several substructures of
colation clusters. Another generalization by Park, Harris, a
Lubensky~PHL! @17# incorporates the effects of noise an
facilitates investigations of the multifractal current distrib
tion on RRNs. We exploit these three models to calcul
logarithmic corrections to scaling for the average resistan
the fractal masses of the backbone, the red~singly con-
nected! bonds, and the chemical~shortest! path as well as of
all moments of the current distribution up to and includi
the next-to-leading order correction.

The percolation models we scrutinize in the present pa
belong to one particular type of percolation, viz., static is
tropic percolation. Nevertheless, logarithmic corrections
expected to be equally important in the critical behavior
other kinds of percolation such as dynamic isotropic per
lation and directed percolation. These complimentary top
are/will be addressed in separate publications@18,19#.

The outline of the present paper is as follows. In Sec
we briefly explain the HL model and its variants. Section
sketches the renormalization of these models and revi
previous results that we need as input as we proceed.
core of our study of logarithmic corrections is presented
Sec. IV. This section also contains our main results. Concl
ing remarks are given in Sec. V. In Appendix A we outlin
©2003 The American Physical Society29-1
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O. STENULL AND H.-K. JANSSEN PHYSICAL REVIEW E68, 036129 ~2003!
our one-loop calculation of certain amplitudes that enter
logarithmic corrections. Appendix B, finally, contains techn
cal details on the computation of integrals.

II. THE HL MODEL AND ITS VARIANTS

In this section we briefly review the HL model and i
generalizations with the aim to provide the reader with ba
ground and to establish notation.

A. The RRN

The HL model is based on earlier ideas by Stephen@20#. It
represents a field theoretic minimal model for the line
RRN, where randomly occupied bonds between nea
neighboring sites on ad dimensional lattice are assumed
behave like Ohmic resistors. However, the HL model is
just describing RRN. It also applies to a class of continuo
spin systems including thex-y model. Here, we are exclu
sively concerned with its implications for the RRN.

The HL model can be formulated in terms of an ord
parameter fieldw(x,uW ) which lives on thed-dimensional real
space with coordinatesx. The variableuW denotes aD-fold
replicated voltage. For regularization purposes,uW 5nW Du
takes discrete values on aD-dimensional torus, the replic
space, i.e.,nW is chosen to be aD-dimensional vector with
integer componentsn (a) satisfying2M,n (a)<M andn (a)

5n (a)mod (2M ). The order parameter field is restricted b
the condition(uWw(x,uW )50. It follows that the replica spac
Fourier transformc(x,lW ) of the order parameter field, de
fined by

w~x,uW !5~2M !2D(
lW

c~x,lW !exp~ ilW •uW !, ~2.1!

satisfiesc(x,lW 50W )50. To retrieve physical quantities from
the replica formulation one has to study the limitD→0, M
→` with (2M )D→1 and Du5u0 /AM→0. Hereu0 is a
constant which sets the width of the voltage interval su
that @2u0AM,u (a)<u0AM #. In the limit D→0, M→`
the constantu0 plays the role of a redundant scaling para
eter, i.e., the theory is independent of its value.

In terms ofw(x,uW ) the HL Hamiltonian reads

H5E ddx(
uW

H t

2
w~x,uW !21

1

2
@“w~x,uW !#2

1
w

2
@“uw~x,uW !#21

g

6
w~x,uW !3J . ~2.2!

The parametert2tc;(pc2p) specifies the deviation of th
occupation probabilityp from its critical valuepc . In mean
field theory the percolation transition occurs att5tc50. w
is proportional to the resistance of the individual rando
bonds. Forw→0, H reduces to the Hamiltonian for then
5(2M )D state Potts model@21# with n→1 for D→0.
Hence,H describes purely geometrical percolation in th
limit @22#.
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The two-point correlation function

G2~x,x8,lW !5^c~x,lW !c~x8,2lW !& ~2.3!

has the valuable property of being a generating function
the average two-point resistance. This feature can be un
stood by noting that

G2~x,x8,lW !5K expS 2
lW 2

2
R~x,x8! D L

C

5K x~x,x8!expS 2
lW 2

2
R~x,x8! D L

C

5P~x,x8!K expS 2
lW 2

2
R~x,x8! D L

C

8
. ~2.4!

Here R(x,x8) is the total resistance between two arbitra
points x and x8. x(x,x8) is an indicator function which is
one if x is connected tox8, and zero otherwise.̂•••&C de-
notes the disorder average over all configurations of the
luted lattice. ^•••&C8 stands for disorder averaging cond
tional to the constraint thatx and x8 are connected.
P(x,x8)5^x(x,x8)&C is nothing more than the correlatio
function for usual~purely geometric! percolation, i.e., the
probability for x and x8 being connected. From Eq.~2.4! it
follows that one can extract the average resistance

MR~x,x8!5^R~x,x8!&C8 ~2.5!

essentially by taking the derivative ofG(x,x8,lW ) with re-
spect tolW 2.

B. The nonlinear RRN

In Ref. @16# Harris implemented ideas by Kenkel an
Straley@23# and generalized the HL model so that it captur
nonlinear voltage-current characteristics of the typeV;I r .
The Hamiltonian for the nonlinear RRN is given by Eq.~2.2!
with the replacement

w

2
@“uw~x,uW !#2→2

wr

2
w~x,uW ! (

a51

D S 2
]

]u (a)D r 11

w~x,uW !,

~2.6!

where wr is proportional to the nonlinear bond resistanc
The two-point correlation function in the nonlinear mod
satisfies

G2~x,x8,lW !5P~x,x8!K expS L r~lW !

r 11
Rr~x,x8! D L

C

8
,

~2.7!

whereL r(lW )5(a51
D (2 il (a)) r 11 and Rr(x,x8) is the total

nonlinear resistance between the two pointsx and x8. To
obtain the average nonlinear resistance

MRr
~x,x8!5^Rr~x,x8!&C8 ~2.8!
9-2
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LOGARITHMIC CORRECTIONS TO SCALING IN . . . PHYSICAL REVIEW E68, 036129 ~2003!
one just needs to take, apart from factors, the derivative
Eq. ~2.7! with respect toL r(lW ). For r→1 one retrieves, of
course, the linear average resistanceMR(x,x8).

Generalizing the RRN to the nonlinear case means m
than just an academic exercise. The great value of the n
linear RRN is that it can be used to map out different frac
substructures of percolation clusters. Looking at the ove
dissipated power, it is not difficult to see that

lim
r→211

MRr
~x,x8!;MB , ~2.9!

whereMB is the average number of bonds~the mass! of the
backbone. Moreover, it has been shown by Blumenfeld
Aharony @24# that

lim
r→`

MRr
~x,x8!;M red, ~2.10!

whereM red stands for the mass of the red bonds and

lim
r→01

MRr
~x,x8!;Mmin , ~2.11!

whereMmin is the mass of the chemical path.

C. The noisy RRN

PHL studied a RRN with microscopic noise in the sen
that the conductances of the individual occupied bonds
drawn from a probability distributionf ~e.g., a suitable
Gaussian!. In order to perform both, the average^•••&C over
the diluted lattice configurations and the noise aver

$•••% f , PHL introduced (D3E)-fold replicated voltagesuJ
5nJDu living on a (D3E)-dimensional torus. That meansnJ
is chosen to be a matrix with integer componentsn (a,b) sat-
isfying 2M,n (a,b)<M andn (a,b)5n (a,b)mod(2M ).

The Hamiltonian introduced by PHL can be cast as

H5E ddx(
uJ

H t

2
w~x,uJ !21

1

2
@“w~x,uJ !#2

2
w

2
w~x,uJ ! (

a,b51

D,E
]2

~]u (a,b)!2
w~x,uJ !

1w~x,uJ !(
l 52

`

v l (
b51

E F (
a51

D
2]2

~]u (a,b)!2G l

w~x,uJ !

1
g

6
w~x,uJ !3J , ~2.12!

with v l being proportional to thel th cumulant of the distri-
bution f. In contrast to the relevantw, the v l represent dan-
gerous irrelevant couplings. The consequences of their d
gerous irrelevance will be explained below.

The two-point correlation functionG2(x,x8,lJ) generaliz-
ing Eq. ~2.3! has the property
03612
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G2~x,x8,lJ !5K expF(
l 51

`
~21! l

2l l !
Kl~lJ !$R~x,x8! l% f

(c)G L
C

,

~2.13!

where$R(x,x8) l% f
(c) is thel th cumulant of the total resistanc

R(x,x8) with respect to the distributionf andKl is defined by

Kl~ lJ !5 (
b51

E F (
a51

D

~l (a,b)!2G l

. ~2.14!

In other words,G(x,x8, lJ ) is a generating function for the
noise cumulant

CR
( l )~x,x8!5^$R~x,x8! l% f

(c)&C8 . ~2.15!

Though the noise cumulants are certainly interesting in th
own right, our main motivation to study them is that they a
closely related to the multifractal moments

MI
( l )~x,x8!5K (

b
~ I b /I !2l L

C

8
~2.16!

of the current distribution. Here,I denotes an external curren
inserted atx and withdrawn atx8, I b is the microscopic
current flowing through bondb and the sum runs over a
bonds on the cluster connectingx and x8. By virtue of
Cohn’s theorem@25#, the noise cumulants and the multifra
tal moments are related by

MI
( l )~x,x8!;CR

( l )~x,x8!. ~2.17!

III. RENORMALIZATION AND SCALING

In this section we review the previous results of our ren
malization group analysis@26–31# for the three models ex
plained in the preceding section. We establish intermed
results that are required for deriving the logarithmic corre
tions we are interested in. For the sake of briefness, we
view the linear and the nonlinear case in one go. This rep
sents no difficulty, since the linear case can be retrieved fr
the nonlinear case simply by taking the limitr→1. We
present the noisy RRN separately, because the dangero
relevance of thev l brings about some intricacies that a
absent in the linear and nonlinear RRN. For background
the methods used in the remainder we refer to Ref.@32#.

A. The linearÕnonlinear RRN

A central stage in the renormalization group analysis
the RRN is, as usual, a diagrammatic perturbation calc
tion. The ultraviolet~UV! divergences encountered in com
puting the diagrams can be handled by dimensional regu
ization. In dimensional regularization the UV divergenc
appear as poles in the deviation«562d from the upper
critical dimension 6 for the RRN. These poles can be elim
nated by employing the renormalization scheme

w→ẘ5Z1/2w, ~3.1a!
9-3
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t→ t̊5Z21Ztt, ~3.1b!

wr→ẘr5Z21Zwr
wr , ~3.1c!

g→g̊5Z23/2Zu
1/2G«

21/2u1/2m«/2, ~3.1d!

where the˚ indicates unrenormalized quantities. The fac
G«5(4p)2d/2G(11«/2) is introduced for later conve
nience.Z, Zt , and Zu are the usual percolationZ factors
known to three-loop order@33#.

The renormalization factorZwr
can be calculated in an

elegant and efficient way by utilizing our real-world interpr
tation @27# of the Feynman diagrams for the RRN. For arb
trary r, Zwr

is known to one-loop order. However, we are le
interested in the most general case than in thoser that have a
clear physical significance, cf Sec. II. In Ref.@27# we have
calculatedZw5Zw1

for the linear RRN to two-loop order. In

our work on the nonlinear RRN@28,29#, we computedZ0
5 lim

r→01Zwr
to two-loop order andZ215 lim

r→211Zwr
to

three-loop order. Moreover, we showed explicitly to thre
loop order thatZ`5 lim

r→`
Zwr

5Zt as had to be expecte

from rigorous results by Coniglio@34#.
The critical behavior of any connectedN-point correlation

function of the order parameter field is governed by an G
Mann–Low renormalization group equation~RGE!. In the
remainder we will use two equitable types of notation for t
N-point functions, depending on which is beneficial to t
actual argument, viz., GN($x,wrL r(lW )%;u,t,m) and
GN($x,lW %;u,t,wr ,m). Our RGE reads

Fm ]

]m
1b

]

]u
1tk

]

]t
1wrz r

]

]wr
1

N

2
gG

3GN„$x,wrL r~lW !%;u,t,m…50. ~3.2!

The Wilson functions appearing in the RGE~3.2! are given
to two-loop order by

g~u!52
1

6
u1

37

216
u21O~u3!, ~3.3a!

k~u!5
5

6
u2

193

108
u21O~u3!, ~3.3b!

z r~u!5z r ,1u1z r ,2u
21O~u3!, ~3.3c!

b~u!52«u1
7

2
u22

671

72
u31S 414 031

10 368
1

93z~3!

4 Du4

1O~u5!. ~3.3d!

The z in Eq. ~3.3d! stands for the Riemannz function and
should not be confused with thez ’s featured in Eq.~3.3c!.
The values ofz r ,1 andz r ,2 are given in Table I. Note that we
have displayedb up to three-loop order since the accuracy
the sort of field theoretic prediction we have in mind depen
03612
r

-

l-

f
s

noticeably on a good knowledge ofb. In the following we
will use for the Wilson functions an abbreviated notation
the typef (u)5 f 1u1 f 2u21•••. For example, we will write
Eq. ~3.3d! asb(u)5b1u1b2u21b3u31b4u41O(u5) and
likewise for the other Wilson functions.

The RGE can be solved in terms of a single flow para
eter, by introducing the characteristics

,
]m̄~, !

] l
5m̄~, !, m̄~1!5m, ~3.4a!

,
]ū~, !

],
5b@ ū~, !#, ū~1!5u, ~3.4b!

,
]

],
ln t̄@ ū~, !#5k@ ū~, !#, t̄~u!5t, ~3.4c!

,
]

],
ln w̄r@ ū~, !#5z r@ ū~, !#, ‘ w̄r~u!5wr , ~3.4d!

,
]

],
ln Z̄@ ū~, !#5g@ ū~, !#, Z̄~u!51. ~3.4e!

These characteristics describe how the parameters trans
if we change the momentum scalem according to m

→m̄(,)5m,. Supplementing our solution to the RGE wit
a dimensional analysis~to account for naive dimensions! we
find

GN„$x,wrL r~lW !%;u,t,m…

5, (d22)N/2Z̄~ ū!N/2GN„$,x,,22w̄r~ ū!L r~lW !%;

ū,,22t̄~ ū!,m…. ~3.5!

Of course, Eq.~3.5! is, as it stands, only of formal value. Th
functionsū, Z̄(ū), and so on have to be filled with life. Thi
will be done in Sec. IV.

To gain information on the observables of interest,
have to take a closer look atN52. Moreover, we have to
make an appropriate choice for the flow parameter,. Since
we are interested in criticality,t50, and long length scales
we choose

,5
2X0

mux2x8u
, ~3.6!

whereX0 is a constant of the order of unity. In the followin
we setx850 for notational simplicity. Atd56 dimensions
we then get

TABLE I. The coefficientsz r ,1 andz r ,2 appearing in Eq.~3.3c!.

r 21 0 1 `

z r ,1 - 1
6

7
12

2
3

5
6

z r ,2
145
216 2

1
32( 1747

54 19 ln(3)210 ln(2)) 2
47
36 2

193
108
9-4
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G2„x,wrL r~lW !;u,0,m…

5S uxu
2X0

D 24

Z̄~ ū!H G2~2X0 ,0;ū,0,1!

1S uxu
2X0

D 2

w̄r~ ū!L r~lW !G28~2X0 ,0;ū,0,1!1•••J ,

~3.7!

whereG285]G2 /]w̄rL r . The scaling functionsG2 and G28
have the loop expansions

G2~2X0 ,0;ū,0,1!5G2
(0)$11AP~X0!ū1O~ ū2!%,

~3.8a!

G28~2X0 ,0;ū,0,1!5G28
(0)$11Awr

~X0!ū1O~ ū2!%,
~3.8b!

whereG2
(0) andG28

(0) denote the respective zero-loop cont
butions.AP andAwr

are amplitudes that, to our knowledg
have not been calculated hitherto. Unlike critical expone
these amplitudes are not entirely determined by the re
malization mapping itself. On the diagrammatic level th
means that we cannot restrict ourself to consider the
divergent parts of the Feynman diagrams. Rather, we nee
include regular parts of the diagrams, i.e., those not ass
ated with « poles. Appendix A outlines these calculatio
that we carried out to one-loop order.

Now we are in the position to extract the structure of o
observables of interest. For the usual percolation correla
function we deduce from Eqs.~3.7! and ~3.8a! that

P~x!5G2~x,0;u,0,m!;S uxu
2X0

D 24

Z̄~ ū!

3$11AP~X0!ū1O~ ū2!%, ~3.9!

Equation ~2.7! in conjunction with Eqs.~3.7! and ~3.8a!
gives for the average nonlinear resistance

MRr
~x!;S uxu

2X0
D 2

w̄r~ ū!$11ARr
~X0!ū1O~ ū2!%,

~3.10!

where we introduced the amplitudes

ARr
~X0!5Awr

~X0!2AP~X0!. ~3.11!

To one-loop order, see Appendix A, the amplitudes appea
in Eqs.~3.9! and ~3.10! are given by

AP~X0!5
5

36
1

1

6
Z~X0!, ~3.12a!

AR1
~X0!52

11

36
2

2

3
Z~X0!, ~3.12b!

AR21
~X0!5

5

36
1

1

6
Z~X0!, ~3.12c!
03612
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AR`
~X0!52

13

36
2

5

6
Z~X0!, ~3.12d!

AR0
~X0!52

1

9
2

1

4
ln 22

7

12
Z~X0!. ~3.12e!

Here we used the shorthandZ(X0)5g1 ln X0 with g
50.577 215 . . . being Euler’s constant.

B. The noisy RRN

Since thev l are irrelevant, they cannot be treated in t
same manner as the relevantwr . Such an attempt would
poison the perturbation expansion. Properly, thev l can be
treated via insertions of the operator

O( l )52
1

2
v lE ddp(

lJ
Kl~lJ !f~p,lJ !f~2p,2lJ !,

~3.13!

wheref(p,lJ) denotes the Fourier transform ofw(x,uJ). Due
to its irrelevance, these insertions generate a multitude
terms corresponding to operators with equal or lower na
dimension thanO( l ). All these operators have to be take
into account in the renormalization process. The operator
lower naive dimension, however, merely lead to subdo
nant corrections and can be ignored for our purposes. Ke
ing all the operators of the same naive dimension, we hav
renormalization in matrix form

OI ( l )→O̊I ( l )5Z= ( l )OI ( l ). ~3.14!

The vectorOI ( l )5(O( l ),O2
( l ) ,•••) contains the family of op-

erators associated withO( l ). For the remaining renormaliza
tions, we employ scheme~3.1!. TheO( l ) have the feature tha
they are master operators. For details on the notion of ma
and slave operators we refer the reader to Refs.@30,31#. The
master operator property has the important consequence
the renormalization matrixZ= ( l ) has a simple structure,

Z= ( l )5S Z( l ) L ••• L

0 L ••• L

A A � A

0 L ••• L

D . ~3.15!

L stands for elements that we need not evaluate.
The connectedN-point correlation functions with an in

sertion ofOI ( l ) are governed by the RGE,

H Fm ]

]m
1b

]

]u
1tk

]

]t
1wz

]

]w
1

N

2
gG1=1g

=

( l )J
3GN~$x,wlJ 2%;u,t,m!OI ( l )50, ~3.16!

where 1= is a unit matrix and where

g
=

( l )~u!52m
]

]m
ln Z= ( l )u0 . ~3.17!
9-5
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The only element ofg
=

( l ) that we need for our purposes is

g ( l )5g1
( l )u1g2

( l )u2, ~3.18!

where we have used the shorthands
n

to

tio

iz
q.

ix

03612
g1
( l )5

21115 l 110 l 2

6~11 l !~112 l !
~3.19a!

and
g2
( l )5

1452 l †90912 l „47131 l $1172712 l †64591386l ~912 l !‡%…‡1288~11 l !2~112 l !2H~2l !

216~11 l !3~112 l !3
, ~3.19b!
en

fter

the
ave
we

e

whereH(n)5(k51
n 1/k is a harmonic number.

RGE ~3.16! can be solved via introducing the functio
Z=̄ ( l )(ū) governed by the characteristic

,
]

],
ln Z=̄ ( l )@ ū~, !#52g

=

( l )@ ū~, !#, Z=̄ ~u!51= . ~3.20!

From the fixed point solution we derive

GN~$x,wlJ 2%;u,t,m!A ( l )

5, (d22)N/222Z̄~ ū!N/2Z̄( l )~ ū!

3GN„$,x,,22w̄~ ū!lJ 2%;ū,,22t̄~ ū!,m…A ( l ),

~3.21!

where

A ( l )5O ( l )1••• ~3.22!

is an operator whose form is determined by the eigenvec
of the RGE. The ellipsis in Eq.~3.22! stands for various
other operators generated in the perturbation calcula
~slaves, cf. Refs.@30,31#!.

To extract the multifractal moments, we have to scrutin
the caseN52. With our choice for the flow parameter, E
~3.6!, we can write in six dimensions

G2~x,wlJ 2;u,0,m!A ( l )

52v lKl~lJ !S uxu
2X0

D 22

Z̄~ ū!Z̄( l )~ ū!

3F (0)$11Av l
~X0!ū1O~ ū2!%1•••,

~3.23!

whereF (0) is a zero-loop scaling function identical toG28
(0)

and whereAv l
is an amplitude that we calculate in Append

A. Equations~2.13!, ~2.17!, ~3.7!, ~3.8a!, and ~3.23! tell us
that the multifractal moments are of the structure

MI
( l )~x!;S uxu

2X0
D 2

Z̄( l )~ ū!$11AI
( l )~X0!ū1O~ ū2!%,

~3.24!
rs

n

e

where we have introduced

AI
( l )~X0!5Av l

~X0!2AP~X0!. ~3.25!

To one-loop order, see Appendix A, this amplitude is giv
by

AI
( l )~X0!52

13

36
2

5

6
Z~X0!1

1

~2l 11!~2l 12!

3@2112Z~X0!2C~2l 11!

2C~2!12C~2l 13!#, ~3.26!

whereC stands for the digamma function@35#.

IV. CRITICAL BEHAVIOR IN dÄ6

Having set the stage, we now determine the sought-a
logarithmic corrections to the scaling behavior ind56. The
basic step that remains to be performed resides in solving
flow equations for the scaling parameters. Once we h
these solutions, our final results are readily stated since
already know the amplitudesAP(X0), ARr

(X0), andAI
( l )(X0)

from Sec. III.

A. Solving the characteristics

Since the characteristics~3.4b!–~3.4b! all depend on
ū(,), we start with solving Eq.~3.4b!. By separation of vari-
ables and Taylor expansion we get

d,

,
5

1

b2

dū

ū2
2

b3

b2
2

dū

ū
1

b3
22b2b4

b2
3

dū1O~ ū!dū.

~4.1!

Therefore, by integrating

ln~,/,0!52
1

b2

1

ū
2

b3

b2
2

ln~ ū!1
b3

22b2b4

b2
3

ū1O~ ū2!,

~4.2!

where,0 is an integration constant. With our choice for th
flow parameter~3.6! we obtain

uxu
x0

5ū2auxuexpS 1

b2ū
1cuxuūD @11O~ ū2!# ~4.3!
9-6
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with a nonuniversal constantx052X0 /(m,0) that defines a
length scale and the coefficients

auxu52
b3

b2
2

5
671

882
50.760 77, ~4.4a!

b25
7

2
53.5, ~4.4b!

cuxu5
b2b42b3

2

b2
3

5
1 490 795

1 016 064
1

279z~3!

56
57.456 04.

~4.4c!

From Eq.~4.3! we obtain after a little algebra

ū5
1

s
expH 2

b3

b2

ln s

s F11OS ln2s

s2
,
1

s2D G J . ~4.5!

Here, we have used the shorthand notation

s5b2ln~ uxu/x0!5
7

2
ln~ uxu/x0! ~4.6!

for the position dependence.
Now, we solve the remaining characteristics. It is to o

advantage that the flow equations~3.4c!–~3.4e! and Eq.
~3.20! are all of the same structure. Thus, we can treat th
simultaneously, by solving

,
] ln x̄~, !

],
5x1ū1x2ū21O~ ū3!, ~4.7!

where x̄ is a wildcard for t̄, w̄r , and Z̄. x0 and x1 are
wildcards for the corresponding coefficients featured in E
~3.3! and ~3.18!. Using ,]/],5b]/]ū and separating vari
ables we obtain

dx̄

x̄
5

x1

b2

dū

ū
1

b2x22b3x1

b2
2

dū1O~ ū!dū. ~4.8!

Now, integration is straightforward. By exponentiating t
result we get

x̄~ ū!5x0ūx1 /b2 expS b2x22b3x1

b2
2

ūD @11O~ ū2!#,

~4.9!

with x0 being an integration constant.

B. Final results: Logarithmic corrections

After having solved the flow equations and computed
amplitudes, we are in the position to write down the critic
behavior of the quantities of interest.
03612
r

m

s.

e
l

1. Percolation correlation function

Our result for the percolation correlation function read

uxu4
P~x!

P0
5@ ū211BP#aP exp~cPū!@11O~ ū2!#,

~4.10!

whereP0 is a nonuniversal constant and

aP52
g1

b2
5

1

21
50.047 62, ~4.11a!

cP5
b2 g22b3 g1

b2
2

52
103

1323
520.077 85, ~4.11b!

BP5
AP~X0!

aP
5

7

2 F5

6
1Z~X0!G52.916 6713.5Z~X0!.

~4.11c!

Note that we have arranged things so that the one-loop
plitude AP is not intermingled with the two-loop contribu
tions from the RG mapping. Equation~4.10!, as it stands, can
be viewed as a parametric representation for the percola
correlation function. This result may be compared to simu
tions, e.g., by simply generating a parametric plot
@ uxu,uxu4P(x)# @cf. Eq. ~4.3!# and then comparing the nu
merical data to this plot. We can also cast our result in
more traditional form by using Eq.~4.5!. Taylor expansion
and a little algebra leads to

uxu4
P~x!

P0
5@s1BP#aPH 12

bP ln s1cP

s

1OS ln2s

s2
,
ln s

s2
,
1

s2D J , ~4.12!

where

bP52
g1b3

b2
2

52
671

5292
520.126 80. ~4.13!

Equations~4.10! and~4.12! show that the parametric rep
resentation is in comparison to the traditional form som
what more systematic because it involves only one exp
sion variable, viz., the effective coupling constantū. In Eq.
~4.12!, on the other hand, functions of the position such
1/s, ln s/s, ln s/s2, and so on compete against each other a
the ordering of the perturbation calculation is not so straig
forward.

A closer look at Eq.~4.12! and the definition~4.6! of s
brings about the following observation: by rescalingx0
→X0x0 one can remove the explicit dependence of E
~4.12! on the arbitrary constantX0. Hence, our result on the
percolation probability~4.12! features at minimum two fit
parameters, viz., the length scalex0 and the constantP0. We
choose, however, to keepX0 in our formula because this wa
we have a further fit parameter at our command that
9-7
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mimic higher order terms in the loop expansion. A likewi
reasoning applies also to the other results that remain to
stated.

We would like to prevent the impression that one c
remove the one-loop amplitudes entirely from our results
rescaling. Of course one can eliminate one of the amplitu
say BP . For removing the amplitudes from several obse
ables, however, one has to rescalex0 individually at each
attempt which leads to inconsistent results.

2. Average resistance

For the average resistance we obtain

uxu22
MR~x!

MR,0
5@ ū211BR#aR exp~cRū!@11O~ ū2!#

5@s1BR#aRH 12
bR ln s1cR

s

1OS ln2s

s2
,
ln s

s2
,
1

s2D J ~4.14!

with MR,0 being a nonuniversal constant and where

aR52
z1,1

b2
52

4

21
520.190 48, ~4.15a!

bR52
z1,1b3

b2
2

5
671

1323
50.507 18, ~4.15b!

cR5
b2 z1,22b3 z1,1

b2
2

5
355

2646
50.134 17, ~4.15c!

BR5
AR1

~X0!

aR
5

7

2 F11

24
1Z~X0!G51.604 1713.5Z~X0!.

~4.15d!

3. Fractal masses

Our result for the fractal mass of the backbone is

uxu22
MB~x!

MB,0
5@ ū211BB#aB exp~cBū!@11O~ ū2!#

5@s1BB#aBH 12
bB ln s1cB

s

1OS ln2s

s2
,
ln s

s2
,
1

s2D J ~4.16!

with the coefficients and the amplitude

aB52
z21,1

b2
5

1

21
50.047 62, ~4.17a!
03612
be

a
s,
-

bB52
z21,1b3

b2
2

52
671

5292
520.126 80, ~4.17b!

cB5
b2 z21,22b3 z21,1

b2
2

5
86

1323
50.065 00, ~4.17c!

BB5
AR21

~X0!

aB
5

7

2 F5

6
1Z~X0!G52.916 6713.5Z~X0!,

~4.17d!

as well as the nonuniversal constantMB,0 .
For the mass of the red bonds we obtain

uxu22
M red~x!

M red,0
5@ ū211Bred#

aredexp~credū!@11O~ ū2!#

5@s1Bred#
aredH 12

bredln s1cred

s

1OS ln2s

s2
,
ln s

s2
,
1

s2D J , ~4.18!

whereM red,0

ared52
z`,1

b2
52

5

21
520.238 10, ~4.19a!

bred52
z`,1b3

b2
2

5
3355

5292
50.633 98, ~4.19b!

cred5
b2 z`,22b3 z`,1

b2
2

5
653

5292
51.123 39, ~4.19c!

Bred5
AR`

~X0!

ared
5

7

2 F13

30
1Z~X0!G51.516 6713.5Z~X0!

~4.19d!

and whereM red,0 is a nonuniversal constant.
The mass of the chemical path behaves in six dimens

according to

uxu22
Mmin~x!

Mmin,0
5@ ū211Bmin#

amin exp~cminū!@11O~ ū2!#

5@s1Bred#
aminH 12

bmin ln s1cmin

s

1OS ln2s

s2
,
ln s

s2
,
1

s2D J , ~4.20!

whereMmin,0 is, of course, a nonuniversal constant and

amin52
z0,1

b2
52

1

6
520.166 67, ~4.21a!
9-8



be

s
or
c-
r

ag

y

o-
per
e
the
s the
ur
ies
der.
pre-

rom
rld
ster
ract
s
op-
era-
tion

sis-

tis-

go-
nu-
lat-
are
pe
he

rs-
237
y
v-

li-

LOGARITHMIC CORRECTIONS TO SCALING IN . . . PHYSICAL REVIEW E68, 036129 ~2003!
bmin52
z0,1b3

b2
2

5
671

1512
50.443 78, ~4.21b!

cmin5
b2 z0,22b3 z0,1

b2
2

5
937

6048
1

5 ln 2

56
2

9 ln 3

112
50.128 53,

~4.21c!

Bmin5
AR0

~X0!

amin
5

7

2 F 4

21
1

3 ln 2

7
1Z~X0!G

51.706 3913.5Z~X0!. ~4.21d!

4. Multifractal moments

Our result for the multifractal moments remains to
stated. We find

uxu22
MI

( l )~x!

MI ,0
( l )

5@ ū211BI
( l )#aI

( l )
exp~cI

( l )ū!@11O~ ū2!#

5@s1BI
( l )#aI

( l )H 12
bI

( l )ln s1cI
( l )

s

1OS ln2s

s2
,
ln s

s2
,
1

s2D J ~4.22!

with nonuniversal constantsMI ,0
( l ) and with coefficients and

amplitudes

aI
( l )52

g1
( l )

b2
, ~4.23a!

bI
( l )52

g1
( l )b3

b2
2

, ~4.23b!

cI
( l )5

b2 g2
( l )2b3 g1

( l )

b2
2

, ~4.23c!

BI
( l )5

AI
( l )~X0!

aI
( l )

. ~4.23d!

The final formulas for the coefficients and the amplitude a
function of l are somewhat lengthy, in particular, those f
cI

( l ) andBI
( l ) . Therefore, we refrain from stating them expli

itly and rather list the corresponding numerical values fol
50, . . . ,5 in Table II. Note that the values forl 50 and l
51 coincide with those for the backbone and the aver
resistance, respectively. Moreover, forl→` the values for
the red bonds are approached. Hence, our results satisf
important consistency checksMI

(0);MB , MI
( l );MR ~since

MR5CR
(1)), and lim

l→`
MI

( l );M red.
03612
a

e

the

V. CONCLUDING REMARKS

We have determined the critical behavior of various ge
metrical and transport properties of percolation at the up
critical dimensiond56. Our investigation comprised th
percolation correlation function, the fractal masses of
backbone, the red bonds, and the shortest path as well a
multifractal moments of the current distribution. To o
knowledge, the logarithmic corrections to these quantit
have not been determined so far, not even to leading or
Hence, our results do not just represent a refinement of
vious results.

Our analysis presented here benefited substantially f
two concepts we introduced earlier, namely, our real-wo
interpretation of Feynman diagrams and our notion of ma
operators. The real-world interpretation makes the abst
replicated field theory of RRN more intuitive and it provide
practical guidance in calculations. The concept of master
erators simplifies the analysis of dangerous irrelevant op
tors tremendously, because one is spared the computa
and diagonalization of giant renormalization matrices.

The results presented in this paper satisfy several con
tency checks. We verified thatMI

( l );MR as it should since
MR5CR

(1) . Furthermore, our results are reassured by sa
fying MI

(0);MB and lim
l→`

MI
( l );M red.

Given the computer hardware and sophisticated al
rithms available today, our results should be testable by
merical simulations. Because we went beyond just calcu
ing the leading corrections, we expect our results to comp
well with simulations, perhaps even quantitatively. We ho
that corresponding numerical work will be carried out in t
near future.

ACKNOWLEDGMENTS

This work has been supported by the Deutsche Fo
chungsgemeinschaft via the Sonderforschungsbereich
‘‘Unordnung und große Fluktuationen’’ and the Emm
Noether-Programm. We thank D. Stauffer for bringing se
eral references to our attention.

APPENDIX A: AMPLITUDES

In this appendix we outline the computation of the amp
tudes entering the logarithmic corrections.

TABLE II. The coefficientsaI
( l ) , bI

( l ) , and cI
( l ) as well as the

amplitudeBI
( l ) appearing in Eq.~4.23!.

l aI
( l ) bI

( l ) cI
( l ) BI

( l )23.5Z(X0)

0 0.04762 20.12680 0.06500 2.91667
1 20.19048 0.50718 0.13417 1.60417
2 20.21905 0.58326 0.13345 1.52428
3 20.22789 0.60681 0.13150 1.50734
4 20.23175 0.61707 0.12989 1.50356
5 20.23377 0.62245 0.12868 1.50335
→` 20.23810 0.63398 0.12339 1.51667
9-9
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1. The linearÕnonlinear RRN

As a prerequisite, we need to know the two-point cor
lation function, as a function of the position space coordin
x, at zero-loop level. Hence we have to calculate

G2
(0)~x,lW !5E

p

exp~ ip•x!

t1p22wrL r~lW !
, ~A1!

where*p is an abbreviation for 1/(2p)d/2*ddp. Employing
Schwinger representation, we recast Eq.~A1! as

G2
(0)~x,lW !5E

0

`

dsexp@2st1swrL r~lW !#

3E
p
exp~ ip•x2sp2!. ~A2!

Completing the square in the exponential renders the
mentum integration straightforward. After expanding to li
ear order inwr we get

G2
(0)~x,lW !5

1

~4p!d/2E0

`

dsexpS 2st2
x2

4sD
3$s2d/21wrL r~lW !s12d/2%

5
1

~2p!d/2 SAt

uxu D
(d22)/2

K (d22)/2~Atuxu!

1
wrL r~lW !

2 ~2p!d/2 SAt

uxu D
(d24)/2

K (d24)/2~Atuxu!,

~A3!

where Kn(z) stands for the modified Bessel function@35#.
We are interested in criticality. For vanishingt, Eq. ~A3!
reduces to

G2
(0)~x,lW !5

G~22«/2!

~4p!d/2 S x2

4 D 221«/2

1wrL r~lW !
G~12«/2!

~4p!d/2 S x2

4 D 211«/2

. ~A4!

Below we will use the abbreviated notion

G2
(0)~x,lW !5G2

(0)~x!1wrL r~lW !G28
(0)~x!. ~A5!

Now we turn to one-loop order. It should be clear fro
Sec. III that the amplitudes entering the logarithmic corr
tions pertain to correlation functions and not vertex fun
tions. Hence, we have to compute Feynman diagrams
their external legs attached and not amputated. Diagram
displayed in Fig. 1 stands for
03612
-
e

o-

-
-
th
as

A5
g2

2 E
p

exp~ ip•x!

@p22wrL r~lW !#2

3E
k
(
kW

1

k22wrL r~kW !

1

~k1p!22wrL r~kW 1lW !
,

~A6!

where we have sett50. We find it convenient to use
Schwinger representation for the further steps. In this rep
sentation the integration over the loop momentumk is
straightforward after completing a square. The summat
over the loop currentkW is not so easy because it is not
Gaussian type for generalr. One has to resort to the saddl
point approximation. Using our real-world interpretatio
however, solving the saddle-point equation reduces to de
mining the total resistance of a diagram with its external le
amputated. We obtain

A5
g2

2

1

~4p!d/2Ep
exp~ ip•x!E

0

`

ds1ds2ds3

s3

~s11s2!d/2

3expFs3wrL r~lW !1Rr~s1 ,s2!wrL r~lW !2
s1s2

s11s2
p2G ,
~A7!

whereRr(s1 ,s2) is the total nonlinear resistance of diagra
A without external legs. Forr 51 diagram A behaves like an
Ohmic network. HenceR1(s1 ,s2)5s1s2 /(s11s2). In the
limit r→211, the total resistance of the diagram witho
external legs is nothing but the sum of the Schwinger para
eters of the internal conducting propagators, i.
R21(s1 ,s2)5s11s2. For r→`, blobs ~multiple connec-
tions! of conducting propagators do not contribute and he
R`(s1 ,s2)50. On the caser→01 we will elaborate further
below.

To carry out the remaining momentum integration, w
once more complete a square. After expansion to linear o
in wr we have

FIG. 1. Two-leg Feynman diagrams for the RRN at one-lo
order. The diagrams are assembled from the three-leg vertex2g

and the bold propagatorGbold(p,lW )5G(k,lW )$12dlW ,0W%, where

G(p,lW )5@t1p22wrL r(lW )#21. Due to the factor $12dlW ,0W%,

which enforces the constraintc(x,lW 50W )50, the bold propagator

decomposes in a conducting partGcond(p,lW )5G(p,lW ) carrying

replica currents and an insulating partGins(p)5G(p,lW )dlW ,0W not
carrying replica currents. Hence the bold diagram decomposes
the conducting diagrams A and B. The bold lines symbolize b
propagators, the light lines stand for conducting, and the das
lines for insulating propagators.
9-10
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A5
g2

2
$P11wrL r~lW !@P21P~r !#%. ~A8!

Here we have introduced abbreviations for the following
tegrals over Schwinger parameters:

P15
1

~4p!dE0

`

ds1ds2ds3

s3

@s1s21s1s31s2s3#d/2

3expF2
s11s2

s1s21s1s31s2s3

x2

4 G , ~A9!

P25
1

~4p!dE0

`

ds1ds2ds3

s3
2

@s1s21s1s31s2s3#d/2

3expF2
s11s2

s1s21s1s31s2s3

x2

4 G , ~A10!

P~r !5
1

~4p!dE0

`

ds1ds2ds3

s3Rr~s1 ,s2!

@s1s21s1s31s2s3#d/2

3expF2
s11s2

s1s21s1s31s2s3

x2

4 G . ~A11!

Examples for the computation of these integrals as well a
list of results are given in Appendix B.

The computation of diagram B is comparatively simp
because it does not involve a summation over a loop curr
We obtain

B5
g2

2
$P11wrL r~lW !@P21P3#%, ~A12!

where

P35
1

~4p!dE0

`

ds1ds2ds3

s3s1

@s1s21s1s31s2s3#d/2

3expF2
s11s2

s1s21s1s31s2s3

x2

4 G . ~A13!

Note thats1 is nothing but the nonlinear total resistance
diagram B without external legs.

a. rÄ1

Gathering the zero-loop result and the results for diagra
A and B we obtain

G2~x,lW !5G2
(0)~x!H 11g2G«S uxu

2 D «F 1

6«
1

5

36
1

g

6G J
2wlW 2G28

(0)~x!H 12g2G«S uxu
2 D «F 1

2 «
1

1

6
1

g

2G J .

~A14!

Next, we remove the« poles by employing our renormaliza
tion scheme~3.1!. The fact that the one-loop renormalizatio
03612
-

a

t.

f

s

factors Z511u/6«1O(u2) and Zw1
5115u/6«1O(u2)

do indeed remove the« poles from the correlation function
~A14! represents an important consistency check for our
culation. Recalling our choice for the flow parameter, we
can write the renormalized correlation function as

G2~x,lW !5G2
(0)~x!H 11uF 5

36
1

g

6
1

ln X0

6 G J 2wlW 2G28
(0)~x!

3H 12uF1

6
1

g

2
1

ln X0

2 G J . ~A15!

From Eq. ~A15! we can simply read off the amplitud
AP(X0). The result is stated in Eq.~3.12a!. Also, we can read
off Aw1

. Using Eq.~3.11! we get the result forAR1
as stated

in Eq. ~3.12b!.

b. r\À1¿

Our one-loop calculation leads to

G28~x!5G28
(0)~x!H 11g2G«S uxu

2 D «F 1

3«
1

5

18
1

g

3G J .

~A16!

Upon renormalization we obtain

G28~x!5G28
(0)~x!H 11uF 5

18
1

g

3
1

ln X0

3 G J . ~A17!

Here we used the one-loop resultZw21
511O(u2). Utiliz-

ing Eq. ~3.11! we get our final result forAR21
, see Eq.

~3.12c!.

c. r\`

In the limit r→` we find

G28~x!5G28
(0)~x!H 12g2G«S uxu

2 D «F 2

3 «
1

2

9
1

2 g

3 G J .

~A18!

Using Zw`
511u/«1O(u2) we obtain the renormalized

version

G28~x!5G28
(0)~x!H 12uF2

9
1

2 g

3
1

2 lnX0

3 G J . ~A19!

Exploiting Eq.~3.11! yields Eq.~3.12d!.

d. r\0¿

In the limit r→01 the diagrammatic resistanceRr(s1 ,s2)
is determined by the shortest self-avoiding path through
diagram with amputated legs, i.e.,R0(s1 ,s2)5min(s1,s2).
We find it useful to write diagram A as
9-11
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A5
g2

2

1

~4p!dE0

`

ds1ds2ds3

s3

@s1s21s1s31s2s3#d/2

3expF2
s11s2

s1s21s1s31s2s3

x2

4 Gu~s22s1!

3exp@2~s11s3!iw0l#, ~A20!

whereu stands for the step function andl5(a51
D l (a). By

virtue of u(s22s1)2152u(s12s2) it is convenient to treat
diagrams A and B in one go. Expanding to linear order inw0
we get

A22B5 iw0lg2P4 , ~A21!

where we dropped contributions independent ofl for nota-
tional simplicity and where

P45
1

~4p!dE0

`

ds1ds2ds3

s3~s11s3!

@s1s21s1s31s2s3#d/2

3u~s12s2!expF2
s11s2

s1s21s1s31s2s3

x2

4 G .
~A22!

With the result forP4 from Appendix B we find

G28~x!5G28
(0)~x!H 12g2G«S uxu

2 D «

3F 5

12«
2

1

36
1

ln 2

4
1

5 g

12 G J . ~A23!

Upon renormalization, for which we here needZw0
51

13 u/4«1O(u2), we get

G28~x!5G28
(0)~x!H 11uF 1

36
2

ln 2

4
2

5 g

12
2

5 lnX0

12 G J .

~A24!

Equation~3.11! finally leads toAR0
as stated in Eq.~3.12e!.

2. The noisy RRN

As above, we start by determining the zero-loop contrib
tion. Without much effort we find

G2
(0)~x,lJ !O ( l )52v lKl~lJ !

G~12«/2!

~4p!d/2 S x2

4 D 211«/2

1•••

52v lKl~lJ !G28
(0)~x!1•••. ~A25!

Now we turn to the one-loop contributions. We have
compute the diagrams A and B with insertions of the ope
tor O ( l ). We once more employ our real-world interpretatio
Since we are interested here in the moments of the cur
distribution instead of the total resistance, we now determ
the moments of the current distribution for the diagra
03612
-

-
.
nt
e
s

rather than their resistance. For details on the method
refer to Refs.@30,31#. We obtain for diagram A withO ( l )

inserted

AO ( l )52
g2

2
v lKl~lJ !@P21S~ l !#1•••, ~A26!

where

S~ l !5
1

~4p!dE0

`

ds1ds2ds3

s3C( l )~s1 ,s2!

@s1s21s1s31s2s3#d/2

3expF2
s11s2

s1s21s1s31s2s3

x2

4 G . ~A27!

The « expansion result for this integral can be found in A
pendix B.C( l )(s1 ,s2) is the moment of the current distribu
tion for diagram A without external legs,

C( l )~s1 ,s2!5s1S s2

s11s2
D 2l

1s2S s1

s11s2
D 2l

. ~A28!

Diagram B with insertion can be written as

BO ( l )52
g2

2
v lKl~lJ !@P21P3#1•••, ~A29!

Note thats1 is nothing but the moment of the current distr
bution for the diagram B with its external legs detached.

Using the results of Appendix B we obtain for the tw
point correlation function with insertion

G2~x,lW !O ( l )52v lKl~lJ !G28
(0)~x!H 12g2G«S uxu

2 D «F 2

3«
1

2

9

1
2g

3
2

1

~2l 11!~2l 12! S 2

«
2112g

2C~2l 11!2C~2!12C~2l 13! D G J 1•••.

~A30!

Recalling our result for the renormalization factorZ( l ) to
one-loop order,

Z( l )512
1215 l 210 l 2

6~11 l !~112 l !

u

«
1O~u2! ~A31!

we find upon renormalization

G2~x,lW !O ( l )52v lKl~lJ !G28
(0)~x!H 12uF2

9
1

2

3
Z~X0!

2
1

~2l 11!~2l 12!
~2112Z~X0!

2C~2l 11!2C~2!12C~2l 13!!G J 1•••.

~A32!
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Via Eq. ~3.25! we finally get the amplitude stated in Eq
~3.26!.

APPENDIX B: INTEGRALS OVER
SCHWINGER PARAMETERS

In this appendix we sketch our computation of integr
introduced in Appendix A. Instead of elaborating on all t
integrals we give two representative examples. Moreover,
give a comprehensive list of results.

1. Examples

As a first example we consider the integralP(1). We
start manipulating it by settings15ty, s25t(12y) and s3
5tz. This change of variables yields

P~1!5
1

~4p!dE0

`

dtdzE
0

1

dyt42d
zy~12y!

@z1y~12y!#d/2

3expF2
t21

z1y~12y!

x2

4 G . ~B1!

Next, we change variables so that the argument of the ex
nential function is simplified. To be specific, we switch fro
t to the integration variable

t85
t21

z1y~12y!

x2

4
. ~B2!

The integration overt8 is straightforward and gives

P~1!5S x2

4 D 52d G~d25!

~4p!d E
0

`

dzE
0

1

dy

3zy~12y!@z1y~12y!#d/225. ~B3!

This can now be simplified by switching fromz to z8
5z/@y(12y)#. We obtain

P~1!5S x2

4 D 52d G~d25!

~4p!d
BS d

2
21,

d

2
21D H 2

62d
2

2

82dJ ,

~B4!

where B(n,m)5G(n)G(m)/G(n1m) is the Beta function
@35#. Via expansion for small«562d and a little algebra we
finally arrive at the result stated in Eq.~B12!.

The second and last example we consider isP4. To get
rid ot the step function we change variables by settings1
5t11t2 , s25t2, ands35t3. This step yields

P45
1

~4p!dE0

`

dt1dt2dt3
t3~ t11t21t3!

@~ t112 t2!t31~ t11t2!t2#d/2

3expF2
t112 t2

~ t112 t2!t31~ t11t2!t2

x2

4 G . ~B5!

P4 can be simplified further upon settingt15ty, t25t(1
2y)/2 andt35tz. We arrive at
03612
s

e

o-

P45
1

4~4p!dE0

`

dtdzE
0

1

dyt42d
z~11y12z!

Fz1
1

4
~12y2!Gd/2

3expF 2
t21

z1
1

4
~12y2!

x2

4 G . ~B6!

Next, thet integration is rendered straightforward by goin
from t to

t85
t21

z1
1

4
~12y2!

x2

4
. ~B7!

Integrating outt8 we get

P45S x2

4 D 52d G~d25!

4~4p!d E0

`

dzE
0

1

dyz~11y12z!

3Fz1
1

4
~12y2!Gd/225

. ~B8!

After simplifying the remaining integrations by introducin
z854z/(12y2) we obtain

P45S x2

4 D 52d G~d25!

~4p!d
412d/2H BS 1

2
,
d

2
21D F 2

42d
2

4

62d

1
2

82dG12FBS 1

2
,
d

2
22D1BS 1,

d

2
22D G

3F 2

62d
2

2

82dG J . ~B9!

« expansion and some rearrangements finally lead to the
sult ~B15!.

2. Results

Here we list our results for all the integrals ov
Schwinger parameters we used in calculating the one-l
diagrams A and B:

P15S x2

4 D 221« G~22«/2!

~4p!d/2
G«H 2

1

3«
2

5

18
2

g

3J ,

~B10!

P25S x2

4 D 211« G~12«/2!

~4p!d/2
G«H 2

2

3«
2

5

9
2

2g

3 J ,

~B11!

P35S x2

4 D 211« G~12«/2!

~4p!d/2
G«H 1

«
1

1

2
1gJ , ~B12!
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P~1!5S x2

4 D 211« G~12«/2!

~4p!d/2
G«H 1

3«
1

1

9
1

g

3J ,

P~21!52P3 , ~B13!

P~0!50, ~B14!

P45S x2

4 D 211« G~12«/2!

~4 p!d/2
G«H 5

12«
2

1

36
1

ln 2

4
1

5 g

12J ,

~B15!
lin

s

nt

03612
S~ l !5S x2

4 D 211« G~12«/2!

~4 p!d/2
G«

2

~2l 11!~2l 12! H 2

3 «
21

12 g2C~2l 11!2C~2!12C~2l 13!J . ~B16!

Note that these results fulfill several consistency chec
namely, S(1)5P(1), S(0)5P(21), and lim

l→`
S( l )

5P(0).
tor
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