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Logarithmic corrections to scaling in critical percolation and random resistor networks
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We study the critical behavior of various geometrical and transport properties of percolation in six dimen-
sions. By employing field theory and renormalization group methods we analyze fluctuation induced logarith-
mic corrections to scaling up to and including the next-to-leading order correction. Our study comprehends the
percolation correlation function, i.e., the probability that two given points are connected, and some of the
fractal masses describing percolation clusters. To be specific, we calculate the mass of the backbone, the red
bonds, and the shortest path. Moreover, we study key transport properties of percolation as represented by the
random resistor network. We investigate the average two-point resistance as well as the entire family of
multifractal moments of the current distribution.
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[. INTRODUCTION tain the good agreement between numerics and theory it was
necessary to push the analytic results beyond the leading
Percolatior{1] is perhaps the most fundamental model forlogarithmic correction. It is reasonable to expect that higher
disordered systems. Despite its simplicity percolation has aorder corrections will be likewise important in percolation.
abundance of application®]. It is one of the best studied The purpose of the present paper is to derive corresponding
problems in statistical physics. After decades of enormouanalytic results for several aspects of the percolation problem
interest it is justified to call percolation a major theme of with the emphasis on transport properties.
statistical physics. Notwithstanding the intensive work ac- Our investigation is based on the Harris-Lubengky.)
complished to date, percolation remains a vivid area of remodel[13—15 for the random resistor networlRRN). In
search. the past, the HL model has proved to be very valuable for
There has been enormous progress in understanding p&tudying the transport properties of percolation clusters as
colation in low dimensions. At smatl many aspects of per- well as related problems. It allows to determine the average
colation can be studied with reasonable effort and high preresistance between two points on a percolation cluster in an
cision by numerical means. ld=2, moreover, several elegantway. A generalization of the HL model by Hafti§]
features of percolation are known exactly due to conformafeaturing nonlinear current-voltage characteristics is suited to
invariance[3]. Higher dimensions benefit from being acces-study the fractal dimensions of several substructures of per-
sible by renormalization group methods. In particular, vari-colation clusters. Another generalization by Park, Harris, and
ous scaling exponents describing critical percolation haveubensky(PHL) [17] incorporates the effects of noise and
been calculated using expansions in the deviatidrom the  facilitates investigations of the multifractal current distribu-
upper critical dimension 6. In comparison, logarithmic cor-tion on RRNs. We exploit these three models to calculate
rections, which are important for the critical behaviordat logarithmic corrections to scaling for the average resistance,
=6, have gained little attention so far. Exceptions can behe fractal masses of the backbone, the tsithgly con-
found in Refs[4—6] where the leading logarithmic correc- nected bonds, and the chemic&hortest path as well as of
tions have been analyzed for purely geometric aspects all moments of the current distribution up to and including
static percolation such as the percolation probabilisob-  the next-to-leading order correction.
ability that a given site belongs to an infinite clugtethe The percolation models we scrutinize in the present paper
mean-square cluster size, and the correlation length. As far &®long to one particular type of percolation, viz., static iso-
the transport properties of percolation clusters are concernettopic percolation. Nevertheless, logarithmic corrections are
logarithmic corrections have not been calculated to date. Paexpected to be equally important in the critical behavior of
of the reason for this lack of progress was certainly that therether kinds of percolation such as dynamic isotropic perco-
were no good numerical estimates available to verify analytidation and directed percolation. These complimentary topics
cal results on logarithmic corrections. In the meantime, howare/will be addressed in separate publicatif®19.
ever, highly precise numerical results for percolation in high The outline of the present paper is as follows. In Sec. Il
dimensions have become availabfe-10]. Now, there exist we briefly explain the HL model and its variants. Section IlI
Monte Carlo results that clearly indicate the importance ofsketches the renormalization of these models and reviews
logarithmic correction$10]. previous results that we need as input as we proceed. The
In recent years logarithmic corrections observed in simucore of our study of logarithmic corrections is presented in
lations on linear polymers have been convincingly explainedec. IV. This section also contains our main results. Conclud-
by field theoretic methodgl1,12. However, in order to ob- ing remarks are given in Sec. V. In Appendix A we outline
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our one-loop calculation of certain amplitudes that enter the The two-point correlation function
logarithmic corrections. Appendix B, finally, contains techni- _ . .
cal details on the computation of integrals. Go(X, X", N)=((X,N) (X", —\)) 2.3

has the valuable property of being a generating function for

the average two-point resistance. This feature can be under-
In this section we briefly review the HL model and its stood by noting that

generalizations with the aim to provide the reader with back-

Il. THE HL MODEL AND ITS VARIANTS

ground and to establish notation. - N2
Go(X, X", \)={ exp — 7R(x,x’)
A. The RRN ¢
2
The HL modgl is based on ea.rli.er ideas by Stepl2enh It _ X(x,x’)exp( _ )\—R(x,x’))
represents a field theoretic minimal model for the linear 2 c

RRN, where randomly occupied bonds between nearest R )
neighboring sites on d dimensional lattice are assumed to , A2 ,
behave like Ohmic resistors. However, the HL model is not =Pxx)\exg = RXxx) | ) . (2.4

just describing RRN. It also applies to a class of continuous

spin systems including the-y model. Here, we are exclu- Here R(x,x') is the total resistance between two arbitrary

sively concerned with its implications f_or the RRN. points x andx’. x(x,x') is an indicator function which is
The HL model can be formulated in terms of an ordergne if x is connected to’, and zero otherwisd. - - )¢ de-

parameter fieldo(x, §) which lives on thed-dimensional real notes the disorder average over all configurations of the di-
space with coordinates. The variabled denotes aD-fold  luted lattice.(- - -)¢ stands for disorder averaging condi-
replicated voltage. For regularization purposess vA¢  tional to the constraint thak and x' are connected.
takes discrete values onRxdimensional torus, the replica P(X.X")={x(x.X"))c is nothing more than the correlation
space, i.e.y is chosen to be #®-dimensional vector with function for usual(putely geometrit percolation, i.e., the
integer components(® satisfying—M < <M and 1(®) probability for x andx’ being connected. From EqR.4) it

= (®mod (2V1). The order parameter field is restricted by follows that one can extract the average resistance

C

the conditionS jo(x,6) =0. It follows that the replica space Mg(x,x")=(R(x,x"))& (2.5
Fourier transformy(x,X) of the order parameter field, de- R
fined by essentially by taking the derivative @(x,x’,\) with re-

spect toN2.

@(x,0)=(2M) P> w(x,Nexpix-6), (2.1
A B. The nonlinear RRN

satisfiesyy(x,\=0)=0. To retrieve physical quantities from _ !N Ref. [16] Harris implemented ideas by Kenkel and
the replica formulation one has to study the lirBit-0, M Straley[23] and generalized the HL model so that it captures

. o ;
o with (2M)P—1 and A= 6,/\M—0. Here d, is a nonlinear voltage-current characteristics of the typel'.

constant which sets the width of the voltage interval such' € Hamiltonian for the nonlinear RRN is given by EB.2)

that [ — By M < 8= 6,yM]. In the limit D—0, M—c  With the replacement

the constan®, plays the role of a redundant scaling param- W W r+1
eter, i.e., the theory is independent of its value. E[V"‘D(X’ 6)]2— — 7’¢,(X, 6) >, ( _ (a)) o(x,0),
In terms ofp(x, 8) the HL Hamiltonian reads a=1\ 96 28
N 1 - . . . .
Hzf d?% > [Z¢(x,0)2+ =[Vo(x,6)]? wherew, is proportional to the nonlinear bond resistance.
(2 2 The two-point correlation function in the nonlinear model
satisfies
w 512, 9 g
T 5[Vee(X,0)]1°+ Zo(X,0)°. (2.2 .
2 6 : Ar(X) ’
Go(x,x" \\)=P(x,x"){ ex 1 R, (x,x") ,
The parameter— 7.~ (p.— p) specifies the deviation of the r c

occupation probability from its critical valuep.. In mean 2.7
field theory the percolation transition occursmat 7.=0. w - D (@41 N
is proportional to the resistance of the individual randomWnere A;(A\)=Z2,_;(=iM*)""" and R,(x,x") is the total
bonds. Forw—0, H reduces to the Hamiltonian for the nonlinear resistance between the two poirtand x’. To
=(2M)P state Potts mode[21] with n—1 for D—0. obtain the average nonlinear resistance

:?rﬁ::c[eé;f describes purely geometrical percolation in this MRr(x,x’)=<R,(x,x’)>(’; 2.9
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one just needs to take, apart from factors, the derivative of 2 (=1
: 8 . ) o (-1 NG

Eq. (2.7) with respect toA,(\). Forr—1 one retrieves, of ~ Gao(X,X",N\)={ ex Izl WKl(m{R(X,X )} ,

course, the linear average resistabeg(x,x"). B : C

Generalizing the RRN to the nonlinear case means more (2.13

than just an academic exercise. The great value of the non- . .
] g where{R(x,x")'}{9 is thelth cumulant of the total resistance

linear RRN is that it can be used to map out different fractal AU R ) :
substructures of percolation clusters. Looking at the overalR(*:X") with respect to the distributiohandK; is defined by

dissipated power, it is not difficult to see that D

E |
N)= (a.8))2
lim Mg (X,X')~Msg, 2.9 Ki(\) BZI{ () } (2.14

r—»—l+

a=

In other words,G(x,x’, 5:) is a generating function for the
whereMg is the average number of bonthe massof the  noise cumulant
backbone. Moreover, it has been shown by Blumenfeld and

Aharony[24] that CRxX)={R(x,x") H) . (2.15
limMg (X,X")~Meq, (2.10 Though the noise cumulants are certainly interesting in their
row own right, our main motivation to study them is that they are

closely related to the multifractal moments
whereM .4 stands for the mass of the red bonds and

(1 " — 2l
lim Mg, (%,X')~M i, 2.1 MIP(xx") <% (Io/1) >C (.19
r—ot
of the current distribution. Heré denotes an external current
whereM, is the mass of the chemical path. inserted atx and withdrawn atx’, 1, is the microscopic
current flowing through bond and the sum runs over all
C. The noisy RRN bonds on the cluster connecting and x’. By virtue of

. . . . . Cohn'’s theorenj25], the noise cumulants and the multifrac-
PHL studied a RRN with microscopic noise in the SeNS&.| moments ar;g rg,-lated b; umd ui

that the conductances of the individual occupied bonds are
drawn from a probability distributiorf (e.g., a suitable MO (x x ) ~cO(x x’ 21
Gaussian In order to perform both, the average - )¢ over X~ CRIX). (219
the diluted lattice configurations and the noise average

{---}, PHL introduced D X E)-fold replicated voltages Il RENORMALIZATION AND SCALING

= VA ¢ living on a (DX E)-dimensional torus. That rg;eaﬁs In this section we review the previous results of our renor-

is chosen to b? a)matnx W|th(|nt§ager( co)mponevffé sat-  malization group analysig26—31] for the three models ex-
isfying —M <p{*A<M and v{*# = v{*Fmod(2M). plained in the preceding section. We establish intermediate
The Hamiltonian introduced by PHL can be cast as results that are required for deriving the logarithmic correc-
. tions we are interested in. For the sake of briefness, we re-

, . ; . . s
d =5 = 2 view the linear and the nonlinear case in one go. This repre-
= = += o ) . :

H f d ng |2 (x.0) 2 [Velx.0)] sents no difficulty, since the linear case can be retrieved from

the nonlinear case simply by taking the limit-1. We
- - present the noisy RRN separately, because the dangerous ir-
- E‘P(Xya)a;:l W‘P(Xa 0) relevance of they, brings about some intricacies that are
' absent in the linear and nonlinear RRN. For background on
' the methods used in the remainder we refer to RR].

@(x,8)

D.E
&2

SRR IV —
TSI

=1 | a=1 (ag(avﬁ))z

A. The linear/nonlinear RRN

- A central stage in the renormalization group analysis of

+ g‘P<X’9) ' (212 the RRN is, as usual, a diagrammatic perturbation calcula-
tion. The ultraviolet(UV) divergences encountered in com-

puting the diagrams can be handled by dimensional regular-

‘t’)\"th v|fbe|ng propoonn;al to Ithéth curr]nulant of the d|dstr|- ization. In dimensional regularization the UV divergences
ution . In contrast to the relevan, theu, represent dan- ooear as noles in the deviation-6—d from the upper

gerous irrelevant couplings. The consequences of their daRitical dimension 6 for the RRN. These poles can be elimi-

gerous irrelevance will be explained below.e nated by employing the renormalization scheme
The two-point correlation functio,(x,x",\) generaliz-

ing Eq. (2.3) has the property o— =22, (3.1a
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rs=7"17 + (3.10 TABLE I. The coefficients;, ; and{, , appearing in Eq(3.30.
Th .
) r - 1 0 1 o
w,—w, =217, w,, (3.19
" ‘ 1 z 2 5
"k 12 2 Sos
g—g=2"3ZG V12, -2 (3.10 &2 216 —5(XF+9In(B)-10In(2)) 3  ~ios

where the” indicates unrenormalized quantities. The factor

G.=(47) 9I'(1+¢/2) is introduced for later conve-
nience.Z, Z., and Z, are the usual percolatiod factors
known to three-loop orddi33].

The renormalization factozWr can be calculated in an
elegant and efficient way by utilizing our real-world interpre-
tation[27] of the Feynman diagrams for the RRN. For arbi-

traryr, Zy, is known to one-loop order. However, we are less

interested in the most general case than in tlidkat have a
clear physical significance, cf Sec. Il. In Rg27] we have
caIcuIatedZWZZWl for the linear RRN to two-loop order. In

our work on the nonlinear RR28,29, we computedZ,
=IimHO+ZWr to two-loop order andi,lzlimeﬁzwr to

noticeably on a good knowledge @ In the following we
will use for the Wilson functions an abbreviated notation of
the typef(u)=f,u+f,u+ .- .. For example, we will write
Eq. (3.3d asB(u) = B u+ B,u?+ Baul+ B,u*+0O(u®) and
likewise for the other Wilson functions.

The RGE can be solved in terms of a single flow param-
eter ¢ by introducing the characteristics

three-loop order. Moreover, we showed explicitly to three-

loop order thatszlimHmZWrzzT as had to be expected

from rigorous results by Coniglif34].

The critical behavior of any connect&point correlation
function of the order parameter field is governed by an Gell-
Mann—Low renormalization group equatigRGE). In the
remainder we will use two equitable types of notation for the
N-point functions, depending on which is beneficial to the

actual argument, viz., GN({X,WrAr(X)};u,T,/,L) and
Gn({X,\};u,7,W, , ). Our RGE reads
J N J N J N J N N
L Bog Tk, Wrir&—wr 57
X G({XW, A (N)};u,7,)=0. (3.2

The Wilson functions appearing in the RGE2) are given
to two-loop order by

1 37
—u+ >—u?+0(ud),

() — —

Mo, W=, (3.43
ue) _

(B =puo) W=, @ap
at

CmAuOI= U], Hu=r, (340

%Inmﬁwka[mn, ‘w(W=w,, (3.49

CNZIWO1=W0], Zw=1 (349

These characteristics describe how the parameters transform
if we change the momentum scale according to u

—>;(€)=,u€. Supplementing our solution to the RGE with
a dimensional analysigo account for naive dimensions/e
find

GN({X, W A (N)};u,7,10)

= (E=2N2Z()N2G ([, €~ 2w, (u) A (N)};

u)y=— 3.3 —
YW=-5gu+ 575 (3.39 u, ¢ 27(u), w). (3.5
5 193, . Of course, Eq(3.9) is, as it stands, only of formal value. The
x(U)=gu—75au"+0(u), (3:3D functionsu, Z(u), and so on have to be filled with life. This
will be done in Sec. IV.
L(U)=¢, U+ &, uP+0(ud) (3.39 To gain information on the observables of interest, we
' " " ’ have to take a closer look &=2. Moreover, we have to
7 671 414031 93((3) make an appropriate choice for the flow paraméteSince
Bu)=—¢gu+ zul——-ud+ 4 we are interested in criticality;= 0, and long length scales,
2 72 10368 4 we choose
+0(u®). 33
(u®) (3.3d % y
The ¢ in Eq. (3.30 stands for the Riemani function and B ,u|x—x’|' 3.6

should not be confused with thgs featured in Eqy(3.30.
The values of, ; and{, , are given in Table I. Note that we

whereXg is a constant of the order of unity. In the following

have displayeg up to three-loop order since the accuracy ofwe setx’ =0 for notational simplicity. Atd=6 dimensions
the sort of field theoretic prediction we have in mind dependsve then get
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Go(x, W, A (X);u,0,u)
-4

RS _
:(2|—X|O> Z(u)[GZ(ZXO,O;U,O,l)

M
+<2—XO) Wr(“)A,—()\)Gz(ZXO,O;u,oyl)_’_... ,
(3.7)

whereG,=dG,/aw, A, . The scaling functions, and G}
have the loop expansions

G4(2X0,0;u,0,1) =GP 1+ Ap(Xo)u+O(ud)},
(3.89

G5(2X0,0:u,0,1) =G5 V{1+A,, (Xo)u+O(u?)},
(3.8b

PHYSICAL REVIEW B8, 036129 (2003

13 5
Ar, (Xo)= = 5z — z2(Xo),

%6 (3.129

11 7

Here we used the shorthang(Xg)=7y+InX, with vy
=0.57725 ... being Euler’s constant.

B. The noisy RRN

Since thev, are irrelevant, they cannot be treated in the
same manner as the relevamt. Such an attempt would
poison the perturbation expansion. Properly, thecan be
treated via insertions of the operator

. L .
@m:_zvlf 4% Ki(X)d(p.X)d(—p. ),

(3.13

whereGY) andG(© denote the respective zero-loop contri-

butions.Ap andA,, are amplitudes that, to our knowledge, -, . -
' . . " where¢(p,\) denotes the Fourier transform @{x, #). Due
have not been calculated hitherto. Unlike critical exponent§0 its irrelevance, these insertions generate a multitude of

the;e a}mplltudes are not entirely dgtermlned py the reNOt e rms corresponding to operators with equal or lower naive
malization mapping itself. On the diagrammatic level this

- . (I)
means that we cannot restrict ourself to consider the U\}ilmensmn tharO™. All these operators have to be taken

divergent parts of the Feynman diagrams. Rather, we need {nto account in the renormalization process. The operators of

include regular parts of the diagrams, i.e., those not assom8wer naive dimension, however, merely lead to subdomi-
ated with 9 oleps Appendix Agoutlinés. tHese calculations nant corrections and can be ignored for our purposes. Keep-

&P - AAPP ing all the operators of the same naive dimension, we have a
that we carried out to one-loop order.

: . renormalization in matrix form
Now we are in the position to extract the structure of our
observables of interest. For the usual percolation correlation

function we deduce from Eq$3.7) and(3.83 that

x|\ "o —
P(X)=G,(x,0;u,0,u)~ 2_x0> Z(u)
X{1+Ap(Xo)u+0(u?)}, (3.9

Equation (2.7) in conjunction with Egs.(3.7) and (3.8
gives for the average nonlinear resistance

2
X . _ _
Mg (%)~ 2|_x|0) W (U){1+Ag (Xo)u+O(u?)},
(3.10
where we introduced the amplitudes
AR (Xo) =Ay, (Xo) —Ap(Xo). (3.1)

To one-loop order, see Appendix A, the amplitudes appearinge

in Egs. (3.9 and(3.10 are given by

5 1
Ap(Xo)= %‘F EZ(XO): (3.123
11 2
Ar,(Xg)=— 36 §Z(Xo), (3.12b
5 1
Ar ,(Xo)= 3_6+ EZ(Xo)a (3.129

0N, 0=z 0. (3.14
The vectorOM =00, 0 ...) contains the family of op-
erators associated with". For the remaining renormaliza-
tions, we employ scher®.1). The ©") have the feature that
they are master operators. For details on the notion of master
and slave operators we refer the reader to R&f3,31]. The
master operator property has the important consequence that
the renormalization matrig") has a simple structure,

z0 6 ... o
Z(l): : : .. : ' (313

¢ stands for elements that we need not evaluate.
The connectedN-point correlation functions with an in-
rtion of (") are governed by the RGE,

{9+ (9+ (9+ (9+N 1+ M
TR TR PR TR R
X G({x,WA 25U, 7, ) o) =0, (3.16
where 1is a unit matrix and where
YO = — et 0, (3.17
Z om =
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The only element ofy(") that we need for our purposes is —1+151+1012

h_
W (3.193
6(1+1)(1+21
YO = oDy 4 402, (3.18 (1+1)( )
where we have used the shorthands and
|
() 145-1[909+2 1 (4713+ {11727+ 21[6459+ 3861 (9+2 ) )]+ 288 1+1)2(1+21)2H(2l) @10
72 2161+1)%(1+21)3 -
|
whereH(n)=3}_,1/k is a harmonic number. where we have introduced
RGE (3.16 can be solved via introducing the function 0
Al (Xo) = A, (Xo) —Ap(Xo). (3.29

Z"(u) governed by the characteristic

J - - - To one-loop order, see Appendix A, this amplitude is given
€ﬁln?')[u(€)]=—y(')[u(é’)], Z(w=1. 320 by

13 1
From the fixed point solution we derive A (Xg) =~ 36 52Xt 2+ 0(2+2)
GN({X,W)TZ};U,T,ILL)A(I) X[—14+22(Xg)—¥(21+1)
:g(d—Z)N/Z—ZZ(U)NIZZ(I)(_) —P(2)+2¥(21+3)], (3.26

><GN({€X,€’ZV_V(U)X’2};U,€’27(U),,u)Aa), whereW stands for the digamma functig¢B5].

(3.21 IV. CRITICAL BEHAVIOR IN d=6
where Having set the stage, we now determine the sought-after
logarithmic corrections to the scaling behaviordr 6. The
AN=pO 4 ... (3.22 basic step that remains to be performed resides in solving the

flow equations for the scaling parameters. Once we have
is an operator whose form is determined by the eigenvectoré§iese solutions, our final results are readily stated since we
of the RGE. The ellipsis in Eq(3.22 stands for various already know the amplitudeSs(Xo), A (Xo), andA{"(Xo)
other operators generated in the perturbation calculatiofrom Sec. IlI.
(slaves, cf. Refd.30,31)).
To extract the multifractal moments, we have to scrutinize A. Solving the characteristics

the caseN=2. With our choice for the flow parameter, Eq. Since the characteristicé3.4b—(3.4b all depend on

(3.6), we can write in six dimensions — ) ) ) )
u(€), we start with solving Eq(3.4b. By separation of vari-

Gz(x,wfz;u,o,,u)Au) ables and Taylor expansion we get

L L 2
- [ |X] )_2___ — d¢ 1 du Bzdu pB53—B2B4 — — —
=, KM a=-] Z(wzW(u — = — = 4+ = "= "du+O(u)du.
_ _ 4.1
XFOL1+A, (Xg)u+O(ud)}+-- -, . _
! Therefore, by integrating
(3.23 ,
Bz, — B3 Bafa— _ —
whereF© is a zero-loop scaling function identical @,® In(€/€0)=— B E'”(U) + Tqu O(u?),
and whereA, is an amplitude that we calculate in Appendix 2 2 4.2
A. Equations(2.13), (2.17), (3.7), (3.83, and (3.23 tell us '
that the multifractal moments are of the structure where{, is an integration constant. With our choice for the
flow parameter3.6) we obtain
M (x)~ ﬁ) 2Z<'>(U){1+A<'>(XO)U+ o(u?)} || 1
' 2Xo ' ’(3 ” - =Ua|x|exp( ﬁ—_+ cwu|[1+0(ud)] (4.3
. 0 ou
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with a nonuniversal constamg=2Xy/(ut) that defines a 1. Percolation correlation function

length scale and the coefficients Our result for the percolation correlation function reads

671 P(X) —
a‘x|=—ﬂ—2 882_0 76077, (4.49 |x |4 =[u" 4+ Bp]P expcpu)[1+0O(u?)],
Pz (4.10
7 . .
,6'2=§=3.5, (4.4b wherePy is a nonuniversal constant and
Y1 1
) ap=— 5 =51 = 0.047 62, (4.11a9
B2Ba— B3 1490795 279(3) B2
s ~Toleoea B~ 45604 s -
4.4 _ 272~ 37’1:_ _
(4.40 Cp 7 1353~ 007785, (4.11b
From Eq.(4.3) we obtain after a little algebra
Aol _TIS L i) | =2.916673.52(X
— 1 BsIns In’s 1 PTa 262072 D2(Xo)-
_geX —E? 1+0 ?,g . (45) (4110
) Note that we have arranged things so that the one-loop am-
Here, we have used the shorthand notation plitude Ap is not intermingled with the two-loop contribu-
; tions from the RG mapping. Equati®#.10), as it stands, can
_ _! be viewed as a parametric representation for the percolation
5= Ban([x//xo) 2 In([xIxo) (4.6 correlation function. This result may be compared to simula-

tions, e.g., by simply generating a parametric plot of
for the position dependence. [Ix,|x|*P(x)] [cf. Eq. (4.3] and then comparing the nu-
Now, we solve the remaining characteristics. It is to ourmerical data to this plot. We can also cast our result in a
advantage that the flow equatiori8.40—(3.4e9 and Eq. more traditional form by using Eq4.5). Taylor expansion
(3.20 are all of the same structure. Thus, we can treat thenand a little algebra leads to
simultaneously, by solving

P(x) bpIns+cp
anx(6) — X* g, =lstBel™ 1= —
€T=X1U+X2u2+0(u3), (4.7
In’s Ins 1
_ . - _ Ol 5. =53 (4.12
where y is a wildcard forr, w,, andZ. xo and y, are s s s
wildcards for the corresponding coe_fficients featured in Eqs.
(3.3) and (3.18. Using €9/ o€ = Bdldu and separating vari- where
ables we obtain 5 671
_ bp=—%=—52—92=—0.12680. (4.13
d du
X _xaQu, PoXe Bhs iy ouidn. (48 ’
x Bz /32 Equations4.10 and(4.12 show that the parametric rep-

resentation is in comparison to the traditional form some-
Now, integration is straightforward. By exponentiating thewhat more systematic because it involves only one expan-

result we get sion variable, viz., the effective coupling constantin Eq.
(4.12), on the other hand, functions of the position such as
1/s, Ing/s, Ins/s%, and so on compete against each other and
the ordering of the perturbation calculation is not so straight-
(4.9 forward.

A closer look at Eq.4.12 and the definition(4.6) of s
with x, being an integration constant. brings about the following observation: by rescaling
—XpXp one can remove the explicit dependence of Eq.
(4.12 on the arbitrary constarX,. Hence, our result on the
percolation probability(4.12 features at minimum two fit

After having solved the flow equations and computed theparameters, viz., the length scaigand the constar®,. We
amplitudes, we are in the position to write down the criticalchoose, however, to keefy, in our formula because this way
behavior of the quantities of interest. we have a further fit parameter at our command that can

BaXx2— ,33X1 [1+0(2)],

;(U) = XOUX:L /ﬂz eXF{
2

B. Final results: Logarithmic corrections
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mimic higher order terms in the loop expansion. A likewise
reasoning applies also to the other results that remain to be

stated.

PHYSICAL REVIEW B68, 036129 (2003

{1183

bB: —_ = — =
32 5292

—~0.12680, (4.17b

We would like to prevent the impression that one can

remove the one-loop amplitudes entirely from our results via

Bl 10 B3~ 11_

rescaling. Of course one can eliminate one of the amplitudes, Cg= > =133 006500, (4.179
sayBp. For removing the amplitudes from several observ- B2
ables, however, one has to rescalgindividually at each An (Xo)
i i i rR,(X0) 7|5
attempt which leads to inconsistent results. By= ; -5 6+Z(Xo)} —2.916 67 3.52(X,),
B

2. Average resistance
For the average resistance we obtain

M
|X|72|\/|R—( [u™1+Bg]*Rexp cru)[ 1+ O(u?)]
R,0
brIns+c
=[S+BR]aR[1—¥

(4.19

In’s Ins 1
(0] — 5
2 &P

with My o being a nonuniversal constant and where

an—— SLi_ 4:—019048 (4.153
R B> 21 '
_ $1aBs 671
br=— i 13 =0.50718,  (4.15B
B2l12~Bsfia_ 355 _
Cr= 5 = oea6=0-13417, (4.150
Ar,(Xo) 7711

+Z(XO)} 1.604 17 3.52(X,).
(4.150

BR:

ar 2|24

3. Fractal masses
Our result for the fractal mass of the backbone is

M
|x|*2MB—(—[ ~*+Bg]®® explcgu)[ 1+ O(U?)]
B,0
bgIns+c
=[s+ BB]aB[ 1B > "8
S
In?s Ins 1
leee 0
with the coefficients and the amplitude
{11 1
ag=— B, —2—1—0.047 62, (4.173

(4.179

as well as the nonuniversal constang .
For the mass of the red bonds we obtain

M ed X — — T
X2 [ g e ciod)[1+O(2)]
Mred,o
bedns+c
=[s+Bred]afeﬂ{1——recJ s
In?s Ins 1
o — 5| (4.18
s g% &2
whereM 40
a __gil——i——oze,slo (4.193
red— B, T 917 : ’ ’
gx’1B3 3355
Brog= — 222 5 "5 =0.63398,  (4.19H
B2le2=Balen _
Com 7 = 595112339, (4.190
g X713 2(X )} 1.516 67 3.52(Xo)
- ——= + . .
red Areqd 2 30 0 0

(4.199

and whereM o4 ois @ nonuniversal constant.
The mass of the chemical path behaves in six dimensions
according to

_2 M min(X)

M min,0

x|

=[u™ 2 Bpyin]2min Xl Cpin) [ 1+ O(u?)]

BminIN S+ Crmin
S

=[s+ Bred]aminl 1

(4.20
whereM n o IS, Of course, a nonuniversal constant and

1
Jfoa_ 15166 67,

8min= 182 6 (4-213
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fodf 1 TABLE II. The coefficientsa(", b{"’, andc{" as well as the
Bmin= — % = 1515~ 044378, (421  amplitudeB(" appearing in Eq(4.23.
2
| a{" b{" c) BN —3.52(X,)
_BalozBalos_ 937 52 9m3_ 0 0.04762 —0.12680  0.06500 2.91667
Crmin= 52 =608 56 112 b1 ~0.19048 050718  0.13417 1.60417
@219 2 ~0.21905  0.58326  0.13345 1.52428
3 ~0.22789  0.60681  0.13150 1.50734
A (Xo) 4 ~0.23175  0.61707  0.12989 1.50356
_TRUO) T4 3 '”2+Z(X ) 5 ~0.23377 062245  0.12868 1.50335
™ay,  2[21 7 0 o  —0.23810  0.63398  0.12339 1.51667
=1.706 39- 3.52(X,). (4.219

V. CONCLUDING REMARKS
4. Multifractal moments ] N i )
We have determined the critical behavior of various geo-

metrical and transport properties of percolation at the upper
critical dimensiond=6. Our investigation comprised the
percolation correlation function, the fractal masses of the
MO ) — _ backbone, the red bonds, and the shortest path as well as the
x|~ VD) =[u"t+B{"1* expc{Mu)[1+0O(u?)] multifractal moments of the current distribution. To our
1,0 knowledge, the logarithmic corrections to these quantities
bOin s+ c® have not been determined so far, not even to leading order.
A7 Hence, our results do not just represent a refinement of pre-
vious results.
)] Our analysis presented here benefited substantially from

Our result for the multifractal moments remains to be
stated. We find

=[s+ B,<'>]au“)[ 1
s
In?s Ins 1

22’2

(4.22 two concepts we introduced earlier, namely, our real-world
2 "2 !
s° s°s

interpretation of Feynman diagrams and our notion of master
operators. The real-world interpretation makes the abstract
replicated field theory of RRN more intuitive and it provides

practical guidance in calculations. The concept of master op-
erators simplifies the analysis of dangerous irrelevant opera-
tors tremendously, because one is spared the computation

+0

with nonuniversal constants!{} and with coefficients and
amplitudes

(1

al— i (4.233 and diagonalization of giant renormalization matrices.
' By’ : The results presented in this paper satisfy several consis-
tency checks. We verified that("~Mp as it should since
0 Mgr=C{). Furthermore, our results are reassured by satis-
p(h=— 22 f‘i 4.23p  fying M{?~Mg and lim__M{"~M eq.
B2 Given the computer hardware and sophisticated algo-
rithms available today, our results should be testable by nu-
B, ,y(2|)_183 3’(1” merical simulations. Because we went beyond just calculat-
f')=—2, (4.230 ing the leading corrections, we expect our results to compare
B3 well with simulations, perhaps even quantitatively. We hope
that corresponding numerical work will be carried out in the
0 near future.
Bp)_A' aif)(") (4.239
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APPENDIX A: AMPLITUDES
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1. The lineanonlinear RRN

As a prerequisite, we need to know the two-point corre- =
lation function, as a function of the position space coordinate

X, at zero-loop level. Hence we have to calculate

G<20>(x,>i):f eXpLip-X) (A1)

p 7HP2—W,A(N)

where [, is an abbreviation for 1/(2)¥2d%. Employing
Schwinger representation, we recast El) as

Gé”(x,)()zfo dsexd —sr+swA,(N)]

xfexp(ip~x—sp2). (A2)
P

Completing the square in the exponential renders the mo-
mentum integration straightforward. After expanding to lin-

ear order inw, we get

1 o NG
GO(x X):—f dsexp —S7— —
20T (42 4s

X{s™2 4w, A (N)st 93

1 J7| @2
:W m) K(d—2)/2(\/;|x|)
WAL () 762
2(2—77)‘”2 X Ka—ay V7IX]),

(A3)

whereK ,(z) stands for the modified Bessel functi¢85].
We are interested in criticality. For vanishing Eq. (A3)
reduces to

. T(2—el2) [x?| 282
0= T2 %)
(471_)d/2 4
. T(1—g/2) [ x?| ~1re2
+WrAr()\)W y (A4)
Below we will use the abbreviated notion
GP(x,X) =GP +w,A,(X)G)(x).  (A5)

PHYSICAL REVIEW B568, 036129 (2003

FIG. 1. Two-leg Feynman diagrams for the RRN at one-loop
order. The diagrams are assembled from the three-leg vertex
and the bold propagato°°Y(p,N)=G(k,X){1- &5}, where
G(p,N)=[7+p?—w,A,(X)]"%. Due to the factor{1—és g},
which enforces the constrair(xt(x,i=5)=0, the bold propagator
decomposes in a conducting paB°"{p,x)=G(p,\) carrying
replica currents and an insulating paBt'”s(p):G(p,):)égva not
carrying replica currents. Hence the bold diagram decomposes into
the conducting diagrams A and B. The bold lines symbolize bold
propagators, the light lines stand for conducting, and the dashed
lines for insulating propagators.

g exp(ip-X)
A=T| — =
p [p _WrAr()\)]

1 1
kaz; K2—w,A, (k) (K+p)2—wW,A (k+X)
(A6)

where we have set=0. We find it convenient to use
Schwinger representation for the further steps. In this repre-
sentation the integration over the loop momentlémis
straightforward after completing a square. The summation

over the loop currenk is not so easy because it is not of
Gaussian type for general One has to resort to the saddle-
point approximation. Using our real-world interpretation,
however, solving the saddle-point equation reduces to deter-
mining the total resistance of a diagram with its external legs
amputated. We obtain

2
g J , f"“
== exp(ip-x dsds,dsg———
2 (4m)92) Aip-x) 0 2105 53(51+32)d/2
N - S152 2
X ex sSWrAr(A)JrRr(Sl,Sz)WrAr()\)_Sl+32p '
(A7)

whereR,(s;,S,) is the total nonlinear resistance of diagram
A without external legs. Far=1 diagram A behaves like an
Ohmic network. HenceR4(s;,S,)=515,/(S1+S,). In the
limit r——17", the total resistance of the diagram without
external legs is nothing but the sum of the Schwinger param-
eters of the internal conducting propagators, i.e.,
R_1(s1,5,)=S;+5S,. For r—o, blobs (multiple connec-

Now we turn to one-loop order. It should be clear from tions) of conducting propagators do not contribute and hence
Sec. lll that the amplitudes entering the logarithmic correcR..(s;,s,) =0. On the case— 0" we will elaborate further
tions pertain to correlation functions and not vertex func-below.
tions. Hence, we have to compute Feynman diagrams with To carry out the remaining momentum integration, we
their external legs attached and not amputated. Diagram A asnce more complete a square. After expansion to linear order

displayed in Fig. 1 stands for

in w, we have

036129-10



LOGARITHMIC CORRECTIONS TO SCALING IN . .. PHYSICAL REVIEW B8, 036129 (2003

2 factors Z=1+u/6s+0O(u®) and Z, =1+5u/6s+O(u?)

g -
- E{H1+WfAf()‘)[H2+H(r)]}' (A8) do indeed remove the poles from the correlation function
(A14) represents an important consistency check for our cal-
Here we have introduced abbreviations for the following in-culation. Recalling our choice for the flow parametewe

tegrals over Schwinger parameters: can write the renormalized correlation function as
S3 5 In X
I,= J.d d D) =GO LAMRLEAN I BN T
1= (4m)0 sids, 53[5182+Sls3+8253]d/2 GLr(X,N)=G5"’(x)y1+u 36+ 6 + 6 ] WA G5 (X)
$11+S; x? 1 LY. In X,
>< e — —_—
exp[ $15+ 515+ 5,55 4 (A9) I-ug+5+t 5| (A1)
M.— fwdsd d s3 From Eg. (A15) we can simply read off the amplitude
2 —(477),, o 0% S2 Ss[slsz+slsg+3233]d/2 Ap(Xo). The result is stated in E@3.123. Also, we can read
R off Ay,. Using Eq.(3.11) we get the result foAg as stated
$11+S; X in Eq. (3.12b.
>< -_—
exr{ S1S,+ 5153+ 5,83 4]’ (A10)
b.r-—17%
TI(r) S3R((51,52) Our one-loop calculation leads to
[$1S,+ 1S3+ S,55]%2
S
s;+s X2 "(x)=GLO) e X _+ Y
mﬁn—i—i——. (A1) G20=G2 7001 1+9°C.| 5] 15, g7 3
S1S,+51S3+ 5,53 4 (A16)
Examples for the computation of these integrals as well as a
list of results are given in Appendix B. Upon renormalization we obtain
The computation of diagram B is comparatively simple
because it does not involve a summation over a loop current. (0 5 y In Xq
We obtain Go(x)=G,"(X){ 1+u| % 18 3 T . (A17)
9° .
= ?{H1+err()\)[H2+ I15]}, (A12) Here we used the one-loop resm;,_1=1+0(u2). Utiliz-
ing Eqg. (3.1) we get our final result forAr |, see Eq.
where (3.120.
1 * S3S r—
Il3= df ds;ds,dss = di2 -
(4m)"Jo [S1S2+S1S3+S5S3] In the limit r — we find

2

$1+S, X
o] %

S1S,+ 5183+ 5,83 4| (AL3)

cun-cinofs- o 3][2+2: ]

Note thats,; is nothing but the nonlinear total resistance of (A18)
diagram B without external legs.

Using wa=1+u/s+0(u2) we obtain the renormalized
version

Gathering the zero-loop result and the results for diagrams
A and B we obtain

a.r=1

2 2y 2InX, AL
st3 T3 || A9

; |) [ H
1 ng(
2|6 736" 6
Exploiting Eqg.(3.11) yields Eq.(3.129.
1

w2 (0) o [PV L Y
warofosel3+3)

(Al14) In the limitr —0™" the diagrammatic resistan&g(s;,s,)
is determined by the shortest self-avoiding path through the
Next, we remove the poles by employing our renormaliza- diagram with amputated legs, i.eRq(S1,S»)=min(s;,s,).
tion schemd3.1). The fact that the one-loop renormalization We find it useful to write diagram A as

GH(x)= G“mu41—u
G2(x.X)=GP(x)
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g2 w0 S5 rather than their resistance. For details on the method we
== df 1ds,ds; > refer to Refs[30,31]. We obtain for diagram A witho ("
(4m)"Jo [S1S2+ 5183+ 55S3] inserted
$1+s, X2 g2 .
XX T S5, 5551 5,55 4 0(s2=31) Aon=—Zu KM+ 2]+, (A26)
Xexd — (s1+S3)iwgh ], (A20) where
where ¢ stands for the step function and=32_,\(¥. By 0
. B o . 1 *© S3C (31,32)
virtue of 6(s,—s;) —1=—0(s;—S,) it is convenient to treat S(h)= ds,ds,ds;
diagrams A and B in one go. Expanding to linear ordewin (4m)%Jo [S1S,+S;S3+S,53]%2
we get 5
sex] -~ X (A27)
A—2B=iwy\g?Il,, (A21) $1S,+51S3+5,S3 4|

where we dropped contributions independenddr nota-  The e expansion result for this integral can be found in Ap-
tional simplicity and where pendix B.C()(s;,s,) is the moment of the current distribu-
tion for diagram A without external legs,

= J'wdsldszd% (51+s) s, |2 s |2
| _
(4m)9Jo [S1So+S1S3+ S553]%2 C()(Sl!sz)_sl(m S 517, (A28)
$1+s, x? . L . .
X — - . Diagram B with insertion can be written as
0(s, SZ)eXF{ S;S,+5,S3+5,5; 4 9
2
g -
(A22) Bot)=— = u,Ki(M[Tp+ 5]+ ---,  (A29)

2
With the result forll, from Appendix B we find
Note thats; is nothing but the moment of the current distri-
L (0) o [IX)? bution for the diagram B with its external legs detached.
Go(X) =G (%)) 1-9°G,| & Using the results of Appendix B we obtain for the two-
point correlation function with insertion
5 1 In2 5y

Xl ==+ +—}. (A23) . - x[\e[2 2
e 364 12 Gz(X,)\)O('):_UlKl()\)Gé(o)(X)[1_9268(%) =3
Upon renormalization, for which we here neéq,ozl 2 1 2
+3ulde +0O(u?), we get +%_m “-1+2y
L~ (0) 1 In2 5y 5InX,
Gox) =G (X 1+l ze= 75~ 5 || —xp(2|+1)—~1f(2)+2\1f(2|+3)) +oe
(A24)
(A30)

Equation(3.1]) finally leads toARo as stated in Eq3.126.
Recalling our result for the renormalization factaf’ to
2. The noisy RRN one-loop order,

As above, we start by determining the zero-loop contribu- ) 1-151-101% u

N=1__ e 2
tion. Without much effort we find zv=1 6(1+1)(1+21) ¢ +O(u) (A31)
)0 & - T(1—¢&/2) (x?|~1Te? we find upon renormalization
G, (X,)\)o(|)=—v|K|()\)—d/2 — +---
(477) 4 R - 2 2
=0~ (0 Gz(X,)\)o('F_U|K|()\)Gé(o)(X)[l_u §+§Z(Xo)
= -0 K(M)GLOX) + - - (A25)

Now we turn to the one-loop contributions. We have to — m(—1+22(x0)
compute the diagrams A and B with insertions of the opera- (21+1)(21+2)
tor O, We once more employ our real-world interpretation.
Since we are interested here in the moments of the current —P(21+1)—-W(2)+2V (21 +3)) | +---.
distribution instead of the total resistance, we now determine
the moments of the current distribution for the diagrams (A32)
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Via Eqg. (3.25 we finally get the amplitude stated in Eq. 1 g 2l+y+22)
(3.26. I,= Tf dtdzf dyt*” =7
S z+—«1—y%}
APPENDIX B: INTEGRALS OVER 4
SCHWINGER PARAMETERS 1
t X
In this appendix we sketch our computation of integrals xexp — a | (B6)

introduced in Appendix A. Instead of elaborating on all the zZ+ Z(l—yz)
integrals we give two representative examples. Moreover, we

give a comprehensive list of results. Next, thet integration is rendered straightforward by going

from t to
1. Examples
As a first example we consider the integld(1). We t=1 X2
start manipulating it by setting;=ty, s,=t(1—y) ands; V=—7— 7" (B7)
=tz. This change of variables yields 7+ Z(l_yZ)
zy(1-y)
dtd e Integrating outt’ we get
[z+y(1-y)]92 grafing ot We g
;{ v X (B1) 11 (X2>5dr(d_5)fmd fld 2A1+y+22)
Xexg—————|. =|— z z
zty(l-y) 4 Na) aama o 2 AT

Next, we change variables so that the argument of the expo- ar2=5

nential function is simplified. To be specific, we switch from
t to the integration variable

1
X z+Z(1—y2) (B8)

After simplifying the remaining integrations by introducing

t™t  x 2 ;
P z'=4z/(1-y*) we obtain
z+y(l-y) 4° (B2)
5-d
The integration ovet’ is straightforward and gives I0,= G 5)417d/2 B 1 9_1 24
‘Tl g (4m)° 2'2 4-d 6-d
2 5— dF(d 5) % 1
I(1)= - | dz| dy 1d d
(4) 0 0 +m +2|B 5 5—2 +B 1,5—2
Xzy(1-y)[z+y(1-y)1*° (B3 > 9
X|—=—=—|. B9
This can now be simplified by switching from to z’ 6—d 8—dH (B9)

=z/[y(1—-y)]. We obtain
e expansion and some rearrangements finally lead to the re-
- 5-dp(d— 5)5 d 2 2 sult (B15).
<>4 “amd 227 6-d 8-d’

(B4) 2. Results
where B(n,m)=T"(n)I'(m)/T"(n+m) is the Beta function
[35]. Via expansion for smalt=6—d and a little algebra we
finally arrive at the result stated in E(B12).
The second and last example we considellis To get
rid ot the step function we change variables by settng I1,=
=t,+t,, S,=t,, andsz=t3. This step yields

2

Here we list our results for all the integrals over
Schwinger parameters we used in calculating the one-loop
diagrams A and B:

X2\ 72T (2—¢/2) 1 5 vy
A |

(B10)
ta(ty+ty+1t3)
il =—f dtdt,dt 2\ trepq_
amtlo T (1 2ttt (1 1) 1,] 92 X)) TEAze 2 5 2y
14 a2 ¢ 3 9 3]
t,+2t X (4) (81
_ 1 2 - B11
Xex’{ L2t (L) 4] (B9
—1+e _

I1, can be simplified further upon settitg=ty, t,=t(1 H3=(X—) I'(1 8/2)G [E+}+7 (@12

—Yy)/2 andtz=tz. We arrive at 4 (47)9/2 tlg 2
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1 _(xz e (1-¢e/2) 1 1 vy S (e NG -1+8r(1—s/2)G 2 2 L
W=7 4m@ |3z 9" 3] =17 Gm? 2+ 1)(21+2) |3e
I(-1)=213, (B13) 12 y—W(21+1)—W(2)+2W(21+3)|. (B16)
11(0)=0, (B14)
B X2\ “1ter(1—¢/2) 5 1 In2 5y Note that these results fulfill several consistency checks,
=7 “am® C|12 36 RRETIE namely, 3(1)=1II(1), 2(0)=II(-1), and lim__3(I)

(B15  =I1(0).
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